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Abstract

The hypothesis of induced travel demand is investigated.  County level data from Maryland,

Virginia, North Carolina, and Washington, DC is used to estimate “fixed effects” cross-sectional time-

series models that relate travel levels (measured as daily vehicle miles of travel) to roadway capacity (in

lane miles).  This includes analysis of a difference (or growth) model estimated using a two stage least

squares procedure with an instrumental variable to account for simultaneity bias.  Individual models for

each state, a combined-state model, and a model with data from the Washington, DC / Baltimore

metropolitan area are estimated.  Results are generally significant and relationships are robust across

geographic areas and different specifications.  Average elasticities of VMT with respect to lane miles are

estimated to be on the order of 0.2 to 0.6.  A Granger Causality test indicates that growth in lane miles

precedes growth in VMT.  Overall, the results build on other recent research in this area by both

confirming the range of elasticities found in other studies and confirming the robustness of these

estimates by accounting for simultaneity bias.
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Introduction

Recent work has empirically estimated relationships between lane miles of highway capacity and

vehicle miles of travel (VMT).  Hansen & Huang (1997) estimated elasticities of VMT with respect to

lane miles using data on California counties and metropolitan areas.  Noland (forthcoming) estimated

nationwide relationships with state level data using a similar approach.  Noland & Cowart (2000) also

have developed estimates using a database of metropolitan areas.  This paper extends this work by

estimating models similar to those of Hansen & Huang (1997) using county level data for the Mid-

Atlantic region of the country, the states of Maryland, Virginia, and North Carolina and also a separate

analysis for the Washington, DC / Baltimore metropolitan area.  It also extends previous work by

estimating an instrumental variable model using two stage least squares estimation to account for

simultaneity bias in the data.  Noland & Cowart (2000) also tested possible instrumental variables but

with mixed results given the weakness of the instruments they selected.  The analysis presented here

provides strong support for the causal nature of the relationship between new highway capacity and

increases in VMT.

Recent literature on the relationship between roadway capacity and levels of vehicle travel

appears to be building a consensus on general effects despite the lack of an explicit accounting for

simultaneity bias.  Short run elasticities (based upon changes in travel with respect to changes in

roadway capacity) of VMT with respect to lane miles have commonly been found to be on the order of

0.2-0.6 with long run elasticities of 0.6-1.0. This research shows results within the lower bound of

previous work that has used aggregate data and econometric techniques.
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Other literature has been based on observational traffic counts within travel corridors.  These

studies have generally not accounted for other exogenous effects that could also contribute to growth in

VMT that econometric techniques have accounted for either explicitly or through the use of fixed effects

models (see Transportation Research Board, 1995, for a good review of research dating back to the

1940’s).  More recently in a comprehensive study that utilized traffic count data, Goodwin (1996)

controlled for exogenous factors that affect VMT growth by selecting comparable control corridors.  In

general, he finds significant increases in traffic due to specific highway improvement projects within these

corridors and estimates travel time elasticities of -0.5 to -1.0.  Overall the results of recent econometric

studies provide similar coefficient values to those derived in the work presented here.

The following section provides a discussion of the phenomenon known as induced travel

demand, and how this analysis addresses the questions surrounding the issue.  This is followed by a

description of the database and methodology used in the analysis.  This is followed by the results with

interpretation of the econometric analysis.  A concluding section discusses policy implications and how

this could affect the planning of road facilities.

Induced Demand: The Issue and Underlying Economic Theory

The concept of “induced demand” involves the idea that additions to roadway capacity result in,

or induce, increases in vehicle travel on the roadway (and the network) above the level that occurred

before the capacity addition.  Whether, and to what extent, addition of roadway capacity “induces”

additional travel has been a cause of controversy in recent years and is confounded by the fact that

other exogenous factors such as increases in population and demographic changes have also been

drivers of VMT growth.  Planners have historically considered transportation demand as a derived

demand for economic activities and assume that travelers will change their behavior as their desire to
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engage in alternative activities changes over time.  This leads to the assertion that capacity increases

(including increases in transit capacity) will be effective at reducing congestion and are needed to

account for exogenous growth in travel.  An understanding of the basic economics of induced travel

challenges this argument and recognizes that individuals will make both travel and location decisions in

response to the generalized cost of travel.

The basic theory underlying the concept of induced travel demand is straightforward. The

addition of roadway capacity, either through additional miles of roadway or additional lanes on an

existing roadway, reduces the time cost of travel.  At some level of congestion, any given driver will

choose to avoid dealing with that congestion, either in favor of an alternative route, an alternative mode,

changing the departure time of the trip, a shorter trip to a similar activity, or avoiding the trip entirely.

Hills (1996) outlines and describes these behavioral effects.

The aggregate impact on VMT of these behavioral effects is shown in Figure 1.  Since each

traveler experiences declining utility with each mile traveled, at some point the cost of travel exceeds the

benefit to the driver.  This increase in generalized cost is primarily the time cost associated with

increasing congestion.  This is shown as point “a” in the figure.  If, however, congestion is relieved

through the addition of roadway capacity, the entire cost curve shifts outward (reflecting a shift toward

lower travel time cost).  This allows higher aggregate levels of travel before a given level of congestion is

reached.  The effect is shown in the figure as a shift of the time cost curve and a movement of the

equilibrium point along the demand curve from point a to point b.  A reduction in time cost from point p

to p’ yields an increase in travel from point q to q’.  In addition, long term responses to increased

access can result in changes in land use patterns that may induce both more trips and longer trips.
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These issues have been hotly debated in the transport literature for many years.  Goodwin

(1996) cites evidence for this effect in studies dating back to the 1930’s.  A special report of the

Transportation Research Board (1995) assessed the impacts of expanding metropolitan highway

capacity on air quality and energy use.  While the basic theory of induced travel is extensively outlined

and described in the text of the report, the conclusions (and a strong dissenting opinion by one member

of the review committee) tended to indicate a lack of consensus on the overall theory.  The focus of the

report on air quality and energy consumption may have confused the issue somewhat as air quality and

energy consumption changes due to changes in the dynamics of traffic flow (associated with capacity

increases) are difficult to measure and model.

While the underlying economic relationships of induced travel are conceptually straightforward,

there are at least two controversies surrounding the implications for roadway capacity expansion.  The

first is the specific nature of the relationship between capacity expansion and “induced” increases in

travel.  The second is whether the existence of this relationship indicates that roadway capacity

expansion provides, on net, costs or benefits to society.  This analysis focuses on the first of these

questions.

While this study does not directly address the second issue, it should be noted that the size and

nature of the effect has important implications for whether capacity expansion provides net benefits to

society.  A large induced travel effect indicates that many of the travel time reduction benefits of highway

expansion may be lost to increased traffic volume (over whatever time period the elasticity applies).  On

the other hand, it could also suggest that there was considerable “pent up” travel demand that was

released when the cost of driving was lowered and this could be interpreted as providing a benefit of

increased mobility.  Conversely, a small induced travel effect would indicate that most congestion
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benefits from capacity expansion are retained, and also that there is no significant latent travel demand

going unfilled.  The timing of the effects is also important.  Long-run elasticities that are significantly

greater than short run elasticities suggest that initial congestion reduction benefits may ultimately pave the

way for increased development and other activities that lead to increased travel levels. While short run

congestion reduction benefits may accrue to existing travelers, long run benefits may accrue to both new

travelers and to the owners of land that is now more accessible.  Cost / benefit analysis of these type of

economic interactions are far more complicated to derive than a simple elasticity relationship, but

ultimately such considerations are critical to assessing the impact of highway projects.  The

environmental implications of alternative development patterns that could be triggered by roadway

capacity expansion is also an important issue and one that could determine whether a specific project

provides, on net, costs or benefits to society.

Data and Preliminary Analysis

Following the approaches of Hansen and Huang (1997) and Noland (forthcoming) this study

econometrically estimates the relationship between roadway capacity, measured as lane miles, and

vehicle travel, measured as average daily vehicle miles of travel at the county level.  Other key factors

that influence travel are also controlled for.  The extent of highway travel in an area is a function of many

factors, including population, income, car ownership levels, land use, fuel prices (and other variable

costs of travel), and availability of alternative modes of travel, such as transit.  Any attempt to estimate

the impact of additions to roadway capacity on travel levels should account for as many of these factors

as possible.

The database for this analysis was originally developed by Energy and Environmental analysis

and is fully documented in EEA (1999).  It includes county level data for Maryland, Virginia, and North
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Carolina as well as for the District of Columbia.  Virginia does not incorporate a number of its cities into

county jurisdictions; data for these cities was unavailable.  Many counties in Virginia are highly urbanized

and would be cities in other states, thus this is more of a definitional omission than a real data problem.

Some of the cities may contain older, more established neighborhoods that have not had large increases

in lane miles (relative to newly developed areas).  The Maryland data excludes Baltimore City for which

data was not readily available.1

For each county in each state, the data collected included geographic area, population and

population density, income per capita, employment (available as total employment and unemployment

rate), and extent of roadway lane miles in different roadway categories.  The time series of lane mileage

and VMT data varied by state.  Virginia and Maryland had data available back to 1970 and 1969,

respectively, while data for North Carolina and the District of Columbia extended back to 1985 and

1984, respectively.

The VMT and lane mile data that states submit to the Federal Highway Administration (FHWA)

for use in the Highway Performance Monitoring System were not available (and in most cases are not

kept) on a county-by-county basis.  Nevertheless, each of the three states collects and tracks this data

at a county level.  In most cases, however, the data does not cover all roads or travel within each

county, and so the state totals do not match the summary statistics for each state produced by the

FHWA.  In particular, each of these states only collect data on travel and roadway extent for roads that

are state-maintained.  In each of the states included in the analysis, this included all interstate lane miles,

all state highways, and many (but not all) other primary roads.  Data covering some secondary roads

                                                

1 Data for Baltimore City, which is separate from Baltimore County, is collected and maintained by the
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was obtained for Maryland and North Carolina but not for Virginia.  To maintain consistency, the

database used in the analysis contains no secondary road data.  There may be some data variation in the

percent of roadway coverage in each state.  This is not believed to represent a problem since the

primary need is to have the data for VMT match the data for lane miles with respect to road coverage,

which it does.

It should also be noted that the general method of VMT data collection appears to be similar in

the three states, although there are some minor differences.  In each case, the states collect VMT data

primarily through traffic counts on a sample of roadway segments.  Each state has a large number of

portable “periodic” traffic counting devices, and these are placed on different roadway segments for

several days at a time throughout the year in order to obtain the counts.  Each state also has some

dedicated “continuous” counters that are kept permanently in one location, but generally far fewer of

these than portable counters used for sampling.  A special effort is often, but not always, made to collect

data on segments that are being considered for or recently had changes in capacity.  VMT samples are

aggregated to estimates of total VMT using a fairly standard methodology, involving the development of

growth factors for each roadway link, based on VMT changes from previous years’ sampling data.

Although the basic approach to data collection appears similar in each state, the number of traffic

counters and the frequency of sampling each roadway segment varies across the states.  This is, then, a

source of uncertainty in the accuracy and consistency of the VMT data used in the analysis.  For this

reason, we chose to estimate separate regression models for each state as well as models including all

states together.

                                                                                                                                                            

city rather than by the State of Maryland.  Historical data were not available from the City.
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There are several variables that could be important but were unavailable for this analysis.  As

discussed in the methodology section below, the effects of these variables are captured by county-

specific and year-specific intercept terms when utilizing a fixed-effects econometric specification.

Average vehicles per driver by county may have been an important factor determining travel growth

over the period but was unavailable for this study.  However, it is likely to be  highly correlated with the

level of population.  Fuel prices, although potentially important, were not easily available on a county

level, only on a state level.  Use of state level data would result in all counties within a state having the

same fuel prices for a given year.  The effects of this variable are therefore captured in any regression

model including an intercept term for each year of data.   Finally, transit data was not available for many

counties so it is not included in the analysis.  It has been noted by other analysts (e.g., Hansen and

Huang, 1997) that the availability of transit itself may be influenced by roadway supply and may

represent a joint product with highway travel, in which case controlling for it would be inappropriate.

Basic characteristics of the five study areas (and all areas taken together) are shown in Table 1.

Several important differences can be seen across the different study areas.  While the average

geographic area of counties in each study area is quite similar, the average population (and therefore

population density) varies considerably.  The Washington, DC / Baltimore metropolitan area has about

1,600 persons per square mile, Maryland has about 420 per square mile, Virginia has slightly under 200

per square mile, and North Carolina has less than 150 per square mile.  The travel per capita is

inversely correlated with population density, with Virginia showing 30 percent to 40 percent more daily

travel per capita (on interstates and state-maintained primary roads) than North Carolina and Maryland,

with the Washington DC / Baltimore metropolitan area about ten percent below Maryland.  This
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suggests that the more densely populated areas require fewer and/or shorter car trips, which may be

due to proximity of destinations and/or greater availability of alternative (non-auto) travel modes.

The average number of lane miles per capita is also greater in the areas with lower population

density, with a higher average in North Carolina and Virginia than in the Washington, DC / Baltimore

metropolitan area and Maryland.  This may reflect the presence of underutilized interstates and major

arterials that have been put in place to provide access to the scattered populous of the rural counties in

states such as North Carolina.  It also may help explain why VMT per capita in densely populated areas

is lower – the availability of roadway miles per person is much lower.  If true, this would imply that

congested conditions limit the VMT of residents in such an area to levels below areas with more

roadway capacity available.  These relationships are examined more formally in the following section

using a multivariate analysis.  Finally, the average daily travel (VMT) per lane mile of available roadway

is indeed much higher in the more densely populated areas, again indicating that there is much less

available road capacity in the Washington, DC / Baltimore metropolitan area than in Virginia, with North

Carolina and Maryland intermediate.

Table 2 lists average annual growth rates of key variables.  The growth rates for several key

variables are significantly different across the different areas.  While the growth rate in VMT is between

3% and 4% per year in all areas, the growth rate in lane miles varies significantly, ranging from 0.38% in

Maryland to 0.87% in the Washington, DC / Baltimore area.  In North Carolina VMT growth is larger

than growth in either population or lane miles, suggesting that average travel per person has increased

significantly.  However, the average VMT per lane mile in North Carolina counties in 1995 (shown in

Table 2) was still quite low compared to Virginia, Maryland, and the Washington, DC / Baltimore area.
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Clearly, the rapid growth in travel per person in North Carolina has not (yet) resulted in roadway usage

levels on a par with the other areas.

Methodology

In all estimated models, a “fixed effects” specification approach has been used.  Fixed effects

models use cross sectional and/or time series intercepts for each unit of observation.  This technique has

two primary advantages.  First, it allows the analyst to use a larger data set (over time) rather than a

simple one year cross-section of data.  Second, the fixed effect terms, entered as intercept (or

“dummy”) variables for the cross-sectional units (one for each county) and for time (one for each year),

capture the influence of factors unknown or unmeasured by the analyst (Johnston & DiNardo, 1997).

Econometrically, a “fixed effects” model acknowledges the researcher’s lack of information about the

unique characteristics of each unit in the data.  It can also reduce the bias associated with correlations

across units that would normally be captured in the error term.  The closer the error term is to being

normally identically distributed, the less bias will be present in the standard errors of the estimates – in

this case the relationship between lane miles and VMT.  Since the data base used here is a panel data

base, our fixed effects models also account for variations across time that might be correlated in the

error term for individual counties.  The fixed effects model is thus specified with a separate intercept

term for each county and each year of data and is estimated using ordinary least squares regression.

For a more detailed discussion of the fixed effects specification see, for example, Kennedy (1992) and

Johnston & DiNardo (1997).

A logarithmic specification of the fixed effects model can be written as:

it
k

k
it

k
tiit cVMT ελβα ∑ +Χ+++= )log()log(
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where:

VMTit is the daily vehicle miles of travel for county i in year t;

αi is the fixed effect for county i, estimated in the analysis;

βt is the fixed effect for year t, estimated in the analysis;

c constant term;

k
itΧ is the value of explanatory variable k for county i and year t; one component of

which is lane miles (LM).

kλ is each of the set of K coefficients to be estimated;

εit is the outcome of a random variable for county i in year t, assumed to be

normally distributed with mean 0.

The model is specified with the natural log of the variables to avoid heteroskedasticity and to allow the

estimated coefficients to be read as elasticities.

The issue of simultaneity bias is not explicitly addressed by this model formulation.  Given that

lane miles may be a function of forecasted growth in VMT, it is likely that this simultaneous relationship

may result in an upward bias in the coefficient estimates.  To both assess the importance of this effect

and to adjust for it, several additional models are estimated.

A difference (or growth) model is analyzed first.  This model essentially correlates annual growth

in lane miles with annual growth in VMT.  It has the added feature of eliminating much of the collinearity

between independent variables.  The specification of this model is as follows:



12

( ) ( ) ( ) ( )( ) it
k

k
ti

k
it

k
titiit XXcVMTVMT ελβα +−+++=− ∑ −− )1()1( loglogloglog

with variables as defined above.

This model is used as the basis for both a Granger causality test which examines the precedence

of the variables.  That is, does lane mile growth precede VMT growth or is the reverse true?

A two stage least squares estimate using the lagged growth in lane miles as an instrument for

current growth in lane miles is formulated as,

( ) ( ) ( ) ( )( ) it
k
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where the lag term, l, is equal to 2 or 3 in the estimates that follow.  As will be seen this model provides

a strong correlation between the growth in lane miles in the current year and the lagged growth in lane

miles over multiple years.  The instruments are not correlated with current growth in VMT.  The

difference specification is also used to avoid strong correlations in the independent variables that could

create bias in some of the estimates.

Results of Econometric Analyses

Various econometric models were estimated using VMT as the dependent variable and lane

miles, population, and income per capita as potential explanatory variables.  Although the principal

results are reported here, additional specifications are reported in EEA (1999).  Separate regressions

were analyzed for five geographic areas: Maryland, North Carolina, Virginia, the Washington, DC /

Baltimore extended metropolitan area, and the full database (all three states and DC).  The DC /

Baltimore extended metropolitan area is comprised of 16 suburban counties around and between the
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two cities (but does not include the cities themselves).2  The main reason for excluding the District of

Columbia itself was the lack of data before 1985.  Excluding the District allows estimating a model with

a more complete time series extending back to 1970.  The city of Washington, DC is included in

regressions that include all three states together. These are referred to below and in the tables as the “all

states” run.

Base Model Results

A summary of basic results for individual areas and all areas together is presented in Table 3.

These are all estimated as ordinary least squares log-linear models with fixed effects.

The results across the five study areas are significant and fairly robust (i.e, consistent coefficients

across region and specification).  All specifications give statistically significant coefficients for the

relationship between lane miles and VMT.  The coefficient values range between about 0.3 and 0.6,

which is consistent with other studies such as Noland (forthcoming).  The DC / Baltimore metropolitan

area specifications have the lowest values on the lane mile coefficient.  This is a somewhat

counterintuitive result since this area represents the most congested subset of the data.  This area also

has the largest use of alternative modes, such as transit, which would imply that road expansions could

have a larger elasticity effect by drawing travelers from other modes.  On the other hand, the lower

coefficient could reflect a greater  degree of infill development due to more mature land use patterns,

relative to more rural counties.  Population growth and per capita income coefficients are significant for

                                                

2 This area includes the Maryland counties of Anne Arundel, Baltimore, Calvert, Carroll, Charles,
Frederick, Harford, Howard, Montgomery, and Prince George’s.  Virginia counties are Arlington,
Fairfax, Fauquier, Loudon, Prince William, and Stafford.  The City  of Alexandria, Virginia is not
included due to its jurisdictional definition as a city as opposed to a county.
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the Washington DC / Baltimore metro area (the latter at a 90% level) but are not different in magnitude

compared to overall results.

For the “all states” regressions, utilizing the full 3-state and DC database, the lane mile

coefficient is slightly larger than for any of the individual study areas.  A 10% change in lane miles

correlates with about a 5.6% to 5.9% increase in travel.  This could indicate that the cross-sectional

variation in the data has a steeper slope than the variation within each state or more simply the result

may be due to the shorter time series.

The coefficient on income per capita is more varied and much less significant across the models.

The consistently strong significance for population is not especially surprising, since the number of

people living in an area is expected to be a principal determinant of the level of vehicle travel in the area.

The generally low value and low significance for income per capita suggests that in most areas, increases

in income do not strongly correlate with increased vehicle travel (at least at the county level of analysis).

This may also reflect the fact that, quite often, greater distances must be covered in rural areas, which

also generally have lower income levels.

These results indicate that after controlling for population and income, a ten percent increase in

lane miles correlates with a 3% percent to 6% increase in daily VMT in the mid-Atlantic region.  Since

these models do not include any lag structure, this result should be interpreted as an average response

(i.e., combining short run and long run effects). The high t-statistics and low variation in results by area

suggests that the results are quite robust.  This is especially true considering the significant differences in

the characteristics of the different study areas, as previously discussed.

Many unmeasured factors have contributed to VMT growth, including demographic changes

over the last 40 years.  One of the more commonly cited factors is the increased number of women in
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the workplace.  Employment growth and growth in vehicle ownership are also drivers of VMT growth.

However these variables are likely to be highly correlated with population growth and therefore cannot

be directly included in the models.  Models with total employment (by county), but excluding total

population, were tested and gave essentially the same results as the models reported here.  In any case,

the use of a fixed effects approach controls for the variation in these unmeasured demographic factors

both by county and over time.

First Difference Model Results

Specifications also were tested using a first difference model.  The additive difference of the logs of

variables (year t minus year t-1) were used, which captures percent changes through time, or the annual

growth in the variables.  This technique eliminates any problems of multi-collinearity which are present in

the base model.  Lane miles and population tend to be highly correlated in the levels model while Table

4 shows that the correlation between lane miles and population is virtually eliminated when differences

are used.  A summary of the first difference results is shown in Table 5.

The results of these regressions are somewhat more varied than the base runs, but still significant

for lane miles in every study area (the Washington DC / Baltimore area is significant only at about the

90% confidence level). The coefficient for the change in population was insignificant in most areas.  The

“R-squared” values in these runs are quite low3, although this is not uncommon for first difference runs,

which tend to draw out the stochastic component of the change in variables from year to year.

                                                

3 “R-Squared” values, while similar, do not correspond to R2 as calculated in OLS regressions.  See
StataCorp (1999) for a discussion of “R-Squared” as defined under the xtreg procedure.
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The coefficient on lane miles varies from a low of 0.15 (for the Washington DC / Baltimore

metropolitan area) to a maximum of 0.61 (for North Carolina).  This range is slightly broader than, but

not inconsistent with, the base run results.  The lane mile coefficients for Virginia are similar to those for

the Washington DC / Baltimore metropolitan area, and much lower than for Maryland and North

Carolina.  These latter two areas have a coefficient on population that is significant, which may explain

the difference in the results for lane miles, and may indicate that growth in travel is more population-

driven in these areas than in the other states.

Simultaneity Bias and Testing for Causal Relationships

One of the key issues of debate over the existence of induced travel is whether the generation of

additional VMT on new or expanded roads merely reflects the response of planners to the forecast

demand for travel, i.e. are planners merely accommodating travel increases that would occur in any

case?  The analysis presented above is likely to suffer from some degree of simultaneity bias if the causal

relationship is reversed (that is, forecasts of VMT result in new road capacity).  To assess this

relationship and the magnitude of simultaneity bias we use two alternative methods.  First, a Granger

Causality test is used to test the time precedence of the relationship; that is, does lane mile growth

precede VMT growth, or vice-versa?  Second, we estimate an instrumental variable regression using

two-stage least squares estimation to test whether lane miles are truly exogenous.

The long time series of data (30 years) for both Maryland and Virginia allow the use of a

Granger Causality test. Maddala (1992) points out that the Granger test is not strictly a test for

exogeneity, but rather for the time-precedence of the variables.  The test is specified by including both a

backward and a forward lag in the regression.  If the backward lag is statistically significant while the

forward lag is not, then this indicates that the independent variable temporally precedes the dependent
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variable (i.e., lane miles precede VMT).  If the significance is reversed, then the dependent variable

precedes the independent variable (i.e., VMT precedes lane miles).

Results for the Granger test are presented in Table 6.  A difference model was used due to

multicollinearity between the backward and forward lag variables when using a levels model.  This is

similar to the difference models shown in Table 5.  Analysis of the data for Maryland and Virginia using

a one year backward and forward lag and also a two year backward and forward lag are shown.  The

backward lag terms are statistically significant above the 95% level for three of the models but not for

the 2 year lag for Maryland.  In all cases the forward lag is not statistically significant.

This result suggests that lane mile growth precedes growth in VMT.  However, as mentioned,

this is not evidence of causality, i.e. that increases in lane miles cause increases in VMT, since the results

can also be explained by planning that correctly anticipates future growth in VMT by building new

capacity in advance.

The second and more powerful technique to correct for simultaneity bias is the use of an

instrumental variable in a two stage least squares regression.  A good instrument for lane miles is one

that is correlated with lane miles but not correlated with VMT.  It is common to use an instrument which

is a lagged value of the variable of interest.  Using the growth (or difference) model specified previously

we “instrument” the growth in lane miles by using growth in lane miles over two and three year periods

(that is log(LMt) – log(LMt-l), where l = 2 or 3).  This variable is both highly correlated with the growth

in lane miles and not correlated with the growth in VMT, as can be seen in Tables 7 – 10 for Maryland,

Virginia, North Carolina, and the All States data.

Table 11 shows the results of four fixed effect regressions with growth in lane miles as the

dependent variable.  As can be seen, the growth in lane miles over a two year or a three year period is a
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highly significant predictor of growth in lane miles in the current year.  Growth in per capita income is not

a significant determinant of lane mile growth while population growth shows a negative sign and is only

relatively strong for Maryland and Virginia.

Table 12 shows the results using the instrumental variable in a two stage least squares

regression.  These results should be compared with the coefficient estimates in the first difference model.

The results generally show that the lane mile coefficient is both positive and significant at or above the

95% confidence level.  The lane mile coefficients are generally similar in magnitude to the results shown

in Table 5.  Results for the “all states” model are 0.505 and 0.457 compared to 0.433 in the previous

model.  The coefficients for Maryland are slightly smaller, 0.397 and 0.290 compared to 0.527.  North

Carolina has coefficient values of 0.638 and 0.479 compared to 0.612 while the coefficient values for

Virginia are higher when the instrument is used, 0.288 and 0.444 compared to 0.145.  Overall these

results appear to provide a strong indication that growth in lane miles is exogenous and therefore

“causes” the growth in VMT, with lane mile elasticities ranging from about 0.2 to 0.6.

Conclusions and Policy Implications

The results presented indicate a significant relationship between the level of highway capacity, as

measured by lane miles, and the level of travel, measured by daily VMT, in the mid-Atlantic region of

the U.S.  After accounting for other important determinants of travel and for potential simultaneity bias,

the estimated elasticity between VMT and lane miles is estimated at between 0.2 to 0.6.  This implies

that a 10% increase in lane mileage can result in anywhere from a 2% to 6% increase in total VMT.  A

Granger test further indicates that changes in lane miles precede changes in travel.

Although there is some variation in the results across study area and specification, there is a

considerable degree of consistency in both the significance and the value of the lane mile coefficient
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across all the models that were estimated.  This is perhaps especially interesting given the significant

differences in the geographic and population characteristics of the three states, as discussed above in the

section on preliminary data analysis.  It should be noted that the elasticity estimates do not account for

potential long run impacts, such as ultimate changes in land use, that may generate further growth in

VMT.  On the other hand, the similar results in urban (DC/Baltimore) and mostly rural (e.g. North

Carolina) areas suggest that both short-run congestion effects and longer run land use/growth effects

may be important contributors to induced demand.  While it is not possible to disentangle these effects

with the data available, it is certainly suggestive that induced travel from new development (even in

uncongested areas) may be significant.

These results add to a growing literature that appears to be unable to reject the induced travel

hypotheses.  The implications for those who advocate increased mobility should be reassuring, as the

estimated relationship implies that adding roadway capacity reduces the cost of travel and encourages

greater overall travel, and hence, mobility.  On the other hand, if congestion reduction is of paramount

concern, then induced travel implies that some or even most of the congestion reduction benefits of

capacity expansion will be lost over time.  Given a desire to both increase mobility and reduce

congestion, the key policy question is whether individual demand for mobility is best served by increases

in highway capacity or by alternative means, such as provision of alternative modes of travel, demand

management policies or urban design changes.  Environmental costs may also be more significant when

induced travel impacts are accounted for, resulting in major differences in the relative social costs and

benefits of alternative mobility enhancing projects.
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Figure 1

Graphic Representation of the Impact of Roadway Expansion on Travel
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Table 1

Average Values of Key County Variables in 1995

Units Maryland North Carolina Virginia Washington, DC/
Baltimore area

All

Total # of Counties x 23 100 96 16 220
Average Geographic Area square miles 421 487 399 417 440
Average Population people 188,699 71,867 45,582 326,878 74,804
Average Population Density people/sq. mile 422 148 194 1,155 237
Average Daily VMT miles/day 3,536,397 1,297,601 1,064,583 5,834,860 1,457,690
Average Daily VMT per Capita VMT/person 21.62 20.55 29.25 19.77 24.43
Average Lane Miles miles 624.42 364.60 260.28 683.45 349.45
Average Lane Miles per Capita lane miles/person 0.0072 0.0087 0.0117 0.0031 0.0098
Average VMT per Lane Mile VMT/lane mile 4,357 3,055 3,475 8,224 3,392
Average Income per Capita 1998$ 24,644 19,846 20,891 29,623 20,865
Average Total # of Jobs jobs 101,128 43,705 31,481 149,293 47,508
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Table 2

Average Annual Growth Rates (by state and area based on years of available data)

Maryland North Carolina Virginia Washington, DC/
Baltimore area

All

Years of Data 1969 - 1996 1984 - 1997 1970 - 1996 1970-1996 1985 - 1995
Population 1.72% 0.96% 1.32% 2.66% 1.10%
Population Density 1.72% 0.97% 1.33% 2.66% 1.11%
VMT 3.46% 3.46% 3.44% 4.16% 3.28%
Lane Miles 0.38% 0.58% 0.61% 0.87% 0.45%
Population per Lane Mile 1.34% 0.38% 0.71% 1.78% 0.65%
VMT per Lane Mile 3.07% 2.86% 2.81% 3.26% 2.82%
Income per Capita 1.50% 1.74% 1.87% 1.76% 1.42%
Jobs 2.52% 1.74% 1.94% 2.93% 1.93%
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Table 3

Base Model Results

Dependent Variable LOG(VMT)
State All States Maryland North Carolina Virginia Washington, DC –

Baltimore
metropolitan area

Years of Data 1985-1995 1969-1996 1985-1997 1970-1996 1970-1996
Log (Lane Miles) 0.587 0.564 0.451 0.451 0.475 0.435 0.506 0.508 0.331 0.327

(12.4) (11.9) (8.01) (8.00) (9.79) (8.02) (15.5) (15.6) (6.17) (6.10)
Log (Population) 0.520 0.569 0.659 0.655 0.560 0.585 0.507 0.504 0.518 0.502

(13.6) (14.3) (24.2) (22.0) (10.7) (9.39) (25.7) (25.6) (17.0) (16.0)
Log (Income Per Capita) - 0.195 - 0.026 - 0.057 - 0.110 - 0.167

- (4.18) - (0.369) - (0.958) - (3.25) - (1.87)
Constant 4.51 2.21 3.38 3.19 4.85 4.24 4.90 3.89 6.09 5.27

(9.23) (3.01) (7.77) (4.62) (7.80) (4.11) (20.0) (9.82) (13.6) (5.73)
N 2420 2420 644 644 1300 1200 2592 2592 432 432
“R-Squared” 0.710 0.713 0.948 0.948 0.856 0.838 0.883 0.884 0.963 0.963
T-stats are in parentheses
County and time specific constants are omitted for brevity.
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Table 4

Correlation between Lane Miles and Population

Base Model Difference Model
All States 0.816 0.040
Maryland 0.903 0.120
North Carolina 0.821 0.066
Virginia 0.686 0.077
Washington, DC / Baltimore metropolitan area 0.722 0.058
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Table 5

First Difference Model Results

Dependent Variable LOG(VMT) Difference*
State All States Maryland North Carolina Virginia Washington, DC –

Baltimore
metropolitan area

Years of Data 1985-1995 1970-1996 1986-1997 1971-1996 1971-1996
Log (Lane Miles Difference) 0.434 0.433 0.517 0.527 0.609 0.612 0.149 0.145 0.153 0.154

(5.84) (5.83) (3.40) (3.47) (6.95) (6.77) (3.56) (3.45) (1.66) (1.66)
Log (Population Difference) 0.067 0.075 0.114 0.243 0.281 0.372 0.117 0.143 0.347 0.379

(0.485) (0.535) (0.423) (0.877) (0.989) (1.17) (2.21) (2.67) (1.88) (1.92)
Log (Income Per Capita Difference) - 0.023 - 0.257 - 0.095 - 0.103 - 0.062

- (0.334) - (2.03) - (1.02) - (2.73) - (0.454)
Constant 0.006 0.005 0.058 0.057 -0.020 -0.027 0.034 0.031 0.068 0.064

(0.275) (0.238) (3.01) (2.95) (-0.874) (-1.11) (2.72) (2.43) (3.97) (3.26)
N 2200 2200 621 621 1200 1100 2496 2496 416 416
“R-Squared” 0.053 0.055 0.175 0.181 0.129 0.131 0.184 0.186 0.328 0.328
T-stats are in parentheses
County and time specific constants are omitted for brevity.
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Table 6

Results of Granger Test using Difference Model

Dependent Variable: LOG(VMT) Difference
State Maryland Virginia Maryland Virginia
Years of Data 1970-

1996
1971-
1996

1970-
1996

1971-
1996

Log (Lane Miles Difference) –backward lag one year 0.545 0.143 - -
(3.450) (3.356) - -

Log (Lane Miles Difference) – forward lag one year -0.097 -0.039 - -
(-0.613) (-0.876) - -

Log (Lane Miles Difference) –backward lag two years - - -0.057 0.123
- - (-0.345) (2.814)

Log (Lane Miles Difference) – forward lag two years - - 0.220 -0.024
- - (1.166) (-0.477)

Log (Population Difference) 0.236 0.156 0.317 0.153
(0.829) (2.838) (1.010) (2.436)

Log (Income Per Capita Difference) 0.257 0.109 0.218 0.111
(1.981) (2.861) (1.547) (2.751)

Constant 0.009 0.038 -0.006 -0.030
(0.592) (6.273) (-0.376) (-4.954)

N 598 2400 552 2208
“R-Squared” 0.181 0.190 0.156 0.197
T-Stats are in parentheses
County and time specific constants are omitted for brevity.
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Table 7

Correlation coefficients: All States

All States Growth in
VMT

Growth in
Lane Miles

Growth in
Lane Miles
over two years

Growth in
Lane Miles
over three
years

Growth in VMT 1.000
Growth in Lane Miles 0.166 1.000
Growth in Lane Miles over two
years

0.128 0.685 1.000

Growth in Lane Miles over three
years

0.113 0.580 0.840 1.000
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Table 8

Correlation coefficients: Maryland

Maryland Growth in
VMT

Growth in
Lane Miles

Growth in
Lane Miles
over two years

Growth in
Lane Miles
over three
years

Growth in VMT 1.000
Growth in Lane Miles 0.113 1.000
Growth in Lane Miles over two
years

0.073 0.755 1.000

Growth in Lane Miles over three
years

0.090 0.615 0.868 1.000

Table 9

Correlation coefficients: North Carolina

North Carolina Growth in
VMT

Growth in
Lane Miles

Growth in
Lane Miles
over two years

Growth in
Lane Miles
over three
years

Growth in VMT 1.000
Growth in Lane Miles 0.276 1.000
Growth in Lane Miles over two
years

0.201 0.697 1.000

Growth in Lane Miles over three
years

0.136 0.594 0.860 1.000
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Table 10

Correlation coefficients: Virginia

Virginia Growth in
VMT

Growth in
Lane Miles

Growth in
Lane Miles
over two years

Growth in
Lane Miles
over three
years

Growth in VMT 1.000
Growth in Lane Miles 0.071 1.000
Growth in Lane Miles over two
years

0.091 0.702 1.000

Growth in Lane Miles over three
years

0.100 0.589 0.821 1.000
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Table 11

Fixed Effects Regressions with Lane Mile Growth as Dependent Variable

Dependent Variable:
Growth in Lane Miles

All States Maryland North Carolina Virginia

Growth in Lane Miles over two
years

0.497
(36.698)

0.505
(28.203)

0.598
(34.353)

0.474
(44.251)

Growth in Lane Miles over three
years

0.310
(21.077)

0.280
(16.512)

0.413
(20.747)

0.296
(30.500)

Growth in Population -0.025
(-0.706)

-0.047
(-1.118)

-0.081
(-1.576)

-0.149
(-2.445)

-0.068
(-0.810)

-0.098
(-0.876)

0.024
(1.139)

-0.032
(-1.310)

Growth in per capita income 0.001
(0.079)

0.008
(0.378)

0.007
(0.287)

-0.025
(-0.867)

-0.015
(-0.624)

0.003
(0.107)

0.025
(1.860)

0.038
(2.556)

Constant -0.002
(-1.650)

-0.000
(-0.277)

0.002
(0.709)

0.004
(1.313)

-0.005
(-2.205)

0.000
(0.157)

-0.002
(-1.056)

-0.003
(-1.172)

N 1980 1760 598 575 1000 900 2400 2304
“R-Squared” 0.441 0.232 0.622 0.377 0.576 0.362 0.478 0.321
T-stats are in parentheses
County and time specific constants are omitted for brevity.
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Table 12

Instrumental Variable Regressions (with fixed effects)

Dependent Variable:
Growth in VMT

All States Maryland North Carolina Virginia

Instrument
= growth in
lane miles
over two
years

Instrument
= growth in
lane miles
over three
years

Instrument
= growth in
lane miles
over two
years

Instrument
= growth in
lane miles
over three
years

Instrument
= growth in
lane miles
over two
years

Instrument
= growth in
lane miles
over three
years

Instrument
= growth in
lane miles
over two
years

Instrument
= growth in
lane miles
over three
years

Growth in Lane Miles 0.505
(4.823)

0.457
(2.796)

0.397
(1.972)

0.290
(0.948)

0.638
(6.491)

0.479
(3.705)

0.288
(4.405)

0.444
(4.958)

Growth in Population 0.031
(0.234)

0.031
(0.214)

0.251
(0.864)

0.219
(0.726)

0.166
(0.589)

0.387
(1.293)

0.120
(1.998)

0.114
(1.694)

Growth in per capita income 0.002
(0.037)

-0.028
(-0.372)

0.255
(1.923)

0.292
(2.047)

0.114
(1.423)

0.133
(1.573)

0.088
(2.232)

0.080
(1.959)

Constant -0.003
(-0.148)

-0.004
(-0.176)

0.009
(0.451)

0.008
(0.396)

0.038
(1.900)

0.038
(1.824)

0.040
(3.098)

0.043
(3.222)

N 1980 1760 598 575 1000 900 2400 2304
Adjusted R2 0.031 0.024 0.112 0.089 0.060 0.060 0.172 0.199
T-stats are in parentheses
County and time specific constants are omitted for brevity.


